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Abstract

This paper presents a convenient and efficient approach to reconstruct two-dimensional distributed dynamic loads on a

damped thin elastic plate from its steady-state dynamic response. The approach is based on a mode-selection method

which comes from an idea that an optimal range of frequency and mode exists for dynamic load reconstruction, as well as

on the consistent spatial expression of the distributed dynamic loads. The criterion for mode selection is derived

theoretically. A comparison between the method of truncated singular value decomposition (TSVD) and the method of

mode selection demonstrates that the former is unstable while the latter is not only stable, but robust. With the proposed

criterion, the method of mode selection enables one to find an optimal range for load reconstruction provided that the

error bounds of both parameters and objective are given or estimated, and hence to make a balance between the

reconstruction range and the error control.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

To reconstruct dynamic loads from response on a structure is of great practical interest in aerospace
engineering, mechanical engineering and civil engineering, because a prior estimation of the dynamic loads will
make the design, analysis and evaluation of the structure more efficient and less costly, while direct
measurements of the dynamic loads are not feasible in many practical cases. The past decade has witnessed
numerous studies of identifying the dynamic loads on a system of multiple dof [1–4], the moving loads on a
bridge [5,6], and impulsive load or multi-point load on a continuum [7–9]. Nevertheless, the reconstruction of
spatially distributed dynamic loads on a continuum is relatively new and few [10–15]. For instance, Liu and
Shepard [11] studied the reconstruction of harmonic forces applied on a beam, while Granger and Perotin [14]
investigated the identification of the random excitations on a beam. In those two studies, they introduced and
applied similar but different modified modal expressions for beam dynamics. Pezerat and Guyader [13] studied
the reconstruction of harmonic excitations acting on a rectangular plate, and Djamaa et al. [10] studied the
loads on a thin cylindrical shell. In both studies, they employed the mode superposition method and finite
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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difference scheme for derivative calculation to describe the plate or the shell. Sehlstedt [12] investigated a
seemingly different problem of reconstructing the boundary traction on a constrained structure. Furthermore,
Jiang and Hu [15] proposed an approach to reconstruct the distributed dynamic loads on an Euler beam from
its steady-state response.

When the model of multiple dof and the multi-point excitation model fail to work and meanwhile direct
measurement for distributed dynamic loads is not available, it is especially valuable to reconstruct the
distributed dynamic loads on a continuum. However, this is a complex inverse problem with inherent ill-
posedness. In some studies mentioned above, much attention was paid to the complicated technical problems
in mathematics, especially in the ill-posedness and regularization methods [16–23], whereas discussions on the
physical nature of the problem are not enough.

In this paper, it is proposed and demonstrated that this ill-posedness basically comes from physics, instead
of mathematics. From a viewpoint of the forward problem from dynamic load to dynamic response, the
continuum acts as a transducer with inherent smoothness physically. Consequently, in the load reconstruction
problem the continuum behaves like an inverse transducer that enlarges the unevenness in response
information. This fact apparently suggests that the reconstruction of distributed dynamic loads on a
continuum based on the mode superposition can be solved only in a finite domain of modes and frequencies.
This idea consequently leads to the proposition of a method of mode selection, which was first demonstrated
in the authors’ previous work [15].

Though the concept of scale factor, the method of mode selection and the idea of consistent expression for
the spatial distribution of load have been proposed in the authors’ previous study [15], they will be further
pursued in this paper in view of their different forms on a plate from those on a beam. This study investigates
the problem of reconstructing distributed dynamic loads on a damped thin elastic plate with rectangular
shape, uniform properties and simple boundary conditions. The objectives of the study are first, to introduce
the concept of scale factor and the method of mode selection on a thin elastic plate, second, to develop a new
theory of reconstructing distributed dynamic loads on the plate from its steady-state response, and finally, to
formulate the criterion for the mode selection method and demonstrate its profits. The emphasis of the paper
is placed on the theoretical analysis for load reconstruction, the criterion for mode selection, and the
comparison between the mode selection method and the TSVD method.

In Sections 3.3 and 4.1, the method of truncated singular value decomposition (TSVD) and the method of
mode selection are compared in theory and in simulations, respectively. With a fixed parameter noise level, the
simulations show that the reconstruction is stable and robust when the latter method is applied, but may
become unstable if the former one is used.

The rest of the paper is organized as follows. Section 2 first examines the dynamics of a thin elastic plate
from a forward viewpoint, and then introduces the concept of scale factor and the method of mode selection
from an inverse viewpoint. Section 3 begins with the description of consistent spatial expression for distributed
dynamic loads, then develops the theory of load reconstruction subsequently, and introduces the difference
between the method of mode selection and TSVD, and finally treats in detail the criterion of mode selection. In
Section 4, numerical simulations are performed to disclose problems and to verify the theoretical results
presented in Sections 2 and 3. Some conclusions are stated in Section 5.
2. Scale factor and mode selection

Consider a rectangular thin elastic plate, which is uniform, undamped and simply supported. The dynamic
response of the plate yields the following dimensionless partial differential equation:

p2ð1þ l2Þ2

4

q2Zðx; Z; tÞ
qt2

þ LZðx; Z; tÞ ¼ pðx; Z; tÞ,

L �
q4

qx4
þ 2l2

q4

qx2 qZ2
þ l4

q4

qZ4
; D �

Eh3

12ð1� n2Þ
, (1)

where x � x=a; Z � y=b are the dimensionless spatial variables scaled by the corresponding side length of the
plate, t�t/T is the dimensionless time scaled by T � 2a2

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
=pð1þ l2Þ, Z�w/a is the dimensionless
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translational displacement, p�a3f/D is the dimensionless distributed transverse excitation, and l � a=bðX1Þ is
the aspect ratio, r is the density, E is the Young’s modulus, n is the Poisson’s ratio, and h is the thickness of
the plate.

The modal analysis of the system gives the normalized modal functions and the corresponding natural
frequencies

W mnðx; ZÞ ¼ 2 sinðmpxÞ sinðnpZÞ; Omn ¼ 2p
m2 þ n2l2

1þ l2
, (2)

where m; n 2 N, and N is the set of all natural numbers.
In order to introduce the concept of scale factor and the method of mode selection, rearrange the natural

frequencies in such an ascending order that

Ok � Omknk
¼ 2p

m2
k þ n2

kl
2

1þ l2
; OkpOkþ1, (3)

where k 2 N, and the corresponding normalized modal functions are denoted as

W kðx; ZÞ �W mknk
ðx; ZÞ ¼ 2 sinðmkpxÞ sinðnkpZÞ. (4)

With the modal transform Zðx; Z; tÞ ¼
P1

k¼1W kðx; ZÞqkðtÞ, the kth modal response corresponding to Eq. (1)
becomes

€qkðtÞ þ O2
kqkðtÞ ¼

4

p2ð1þ l2Þ2
pkðtÞ, (5)

where

pkðtÞ �
Z 1

0

Z 1

0

W kðx; ZÞpðx; Z; tÞdxdZ; k 2 N

the dot represents the derivative with respect to the dimensionless time t, qk(t) is the modal coordinate, pk(t) is
the general force, and W kðx; ZÞ is the modal function, respectively.

Introducing modal damping into Eq. (5) gives

€qkðtÞ þ 2zkOk _qkðtÞ þ O2
kqkðtÞ ¼

4

p2ð1þ l2Þ2
pkðtÞ; k 2 N, (6)

where zk is the kth damping ratio. Hereinafter presented are the concept of scale factor and the method of
mode selection.

2.1. Scale factor

If the transverse excitation is harmonic in the time domain and proportional to the jth mode shape in the
spatial domain, namely,

pðx; Z; tÞ ¼ p0W jðx; ZÞ eiOt, (7)

where p0 is a real constant, then the general force and the corresponding steady-state response of the kth mode
become

pkðtÞ ¼ djkp0 e
iOt,

qkðtÞ ¼ djk

4

p2ð1þ l2Þ2
p0

1

O2
k � O2 þ i2zkOkO

eiOt, (8)

where i ¼
ffiffiffiffiffiffiffi
�1
p

and djk is the Kronecker delta.
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To examine the variance of the scale effect with both mode order k and excitation frequency O, it is useful to
introduce the following scale factor

SF �
1

O2
k � O2 þ i2zkOkO

¼
1

O2

1

g2 � 1þ i2zkg
, (9)

where g � Ok=O. With help of this scale factor, the translational displacement of the steady-state response can
be expressed as

Zðx; Z; tÞ ¼
4

p2ð1þ l2Þ2
p0SF eiOtW jðx; ZÞ. (10)

The scale factor SF is a complex number with amplitude

jSF j �
1

O2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2 � 1Þ2 þ ð2zkgÞ

2
q , (11)

which indicates that the scale effect comes from cs � 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2 � 1Þ2 þ ð2zkgÞ

2
q

, where g 2 ð0;1Þ. Fig. 1 shows
the curve for cs with fixed values zk ¼ 0:1.
2.2. Mode selection

It is clear from Eq. (9) that the damped system is a low-pass filter in frequency domain. More important is
the fact that the steady-state response of this system mainly depends on the combination of the frequency and
the spatial distribution of the excitation. For example, given a harmonic excitation with a spatial distribution
proportional to a specific mode, the steady-state response becomes significant if the excitation frequency is
close to the natural frequency corresponding to this mode. Otherwise, the steady-state response is trivial. In a
word, the steady-state response depends significantly on the difference between the excitation frequency and
the natural frequencies corresponding to the modal components comprising the spatial distribution of the
excitation, as well as on the excitation frequency.

The above observation leads to the first assertion of authors. That is, it is inherently a process of finite
identification to reconstruct distributed dynamic loads on any continuum, if any modal expression is applied
to describe the response. In fact, the difficulty in reconstructing the dynamic load of high frequency has been
well acknowledged. Furthermore, the second point disclosed by the authors’ study is that the reconstruction of
distributed dynamic loads can only be made in a finite range, because the spatial modal components of the
-2
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excitation whose natural frequencies are distant from the excitation frequency have trivial attribution to the
steady-state response and hence can hardly be reconstructed from the response.

The above discussion naturally leads to a hypothesis for the reconstruction of distributed dynamic loads as
follows. Only a finite range of frequency and spatial modes of the distributed dynamic loads could be
reconstructed from the response data, and there should be an optimal range for the load reconstruction when
a specific level of measurement sensitivity and noise is known or estimated for a specific system. Furthermore,
it should be remarked that this is analogous to the function of animal’s ears, which means different animals
have different ranges of sound perception due to their different structure of ears by nature.

Upon this hypothesis, a method named mode selection is proposed applying the concept of ‘‘scale factor’’ in
Eq. (9) to determine an appropriate range for the load reconstruction. When the main frequencies of loads are
obtained from the response, the scale factor SF of every mode can be determined, and only those modes, the
amplitudes of whose corresponding scale factors divided by that of the maximum scale factor are larger than a
threshold, will be chosen for the load reconstruction. Section 3.4 will derive a criterion to determine such a
threshold. Meanwhile, the important role and effect of the scale factor has been demonstrated in the authors’
previous study [15]. As the scale factor plays a similar role in the dynamic response of a thin elastic plate, it will
not be described and demonstrated at length in this paper.

This method seems similar to the regularization method of discarding smaller singular values, namely
TSVD. However, they are not the same concept in fact. When the regularization method TSVD is applied as
an alternative method for mode selection, or as an alternative criterion in mode selection, the results are not as
good as those with mode selection. Sections 3.3 and 4.1 will compare the method of mode selection with
TSVD. Furthermore, it should be pointed out that, though the scale effect seems apparent in the forward
problem and causes no trouble, it is the key point which results in ill-posedness and irreversibility in the
inverse problem.

3. Reconstruction theory of distributed dynamic loads

3.1. Consistent spatial expression for distributed dynamic loads

In previous studies [11,14], modal functions or modified modal functions have been employed as the
orthogonal base functions to describe the distributed dynamic loads, but these kinds of expressions conflict
with the actual dynamic loads near the fixed boundaries of the structure. For instance, either the modal
functions or the modified modal functions of a plate always tend to be zero near any fixed boundary, whereas
the dynamic loads near the boundary may not vanish. Hence, with any linear combination of these base
functions it is impossible to correctly describe the non-zero dynamic loads near any fixed boundary.

Therefore, it is proposed by the authors that some sort of consistent spatial expressions for distributed
dynamic loads would be necessary to cope with this problem. In fact, there are a great variety of base functions
for this purpose, such as many orthogonal polynomials. The authors’ practice indicates that the double
Legendre polynomials can offer a good example.

Provided that the distributed dynamic load on the plate is smoothly continuous in spatial dimensions, the
spatial part of the load may be described by the expansion of a set of orthogonal base functions as

Gðx; ZÞ ¼
X

l

aljlðx; ZÞ, (12)

where G is the spatial function of the load, jl is the lth orthogonal base function, and al is the corresponding
lth coefficient. The set of base functions {jl} can be orthonormal modal functions or orthonormal double
Legendre polynomials expressed, respectively, as follows:

jlðx; ZÞ �W lðx; ZÞ ¼ 2 sinðmlpxÞ sinðnlpZÞ, (13)

jlðx; ZÞ � Pml
ðxÞPnl

ðZÞ, (14)

where the subscripts of the double Legendre polynomials are in accordance with those of the modal functions
satisfying the condition described in Eq. (3).
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3.2. Reconstruction theory

If the distributed dynamic load comprises Np frequency components with different phase angles in time
domain, it can be expressed as

pðx; Z; tÞ ¼
XNp

r¼1

Grðx; ZÞ eiðÔrtþŷrÞ. (15)

Applying Eq. (15) into Eq. (6) leads to the general force and the corresponding steady-state response of the kth
mode

pkðtÞ ¼
XNp

r¼1

Z 1

0

Z 1

0

W kðx; ZÞGrðx; ZÞdxdZ eiðÔrtþŷrÞ, (16)

qkðtÞ ¼
4

p2ð1þ l2Þ2
XNp

r¼1

1

O2
k � Ô

2

r þ i2zkOkÔr

Z 1

0

Z 1

0

W kðx; ZÞGrðx; ZÞdxdZ eiðÔrtþŷrÞ. (17)

As shown in Eq. (9), the scale factor is defined as

SF ðk; rÞ ¼
1

O2
k � Ô

2

r þ i2zkOkÔr

. (18)

To separate the spatial and temporal information from the steady-state response, it is helpful to introduce
several abbreviation notations as follows

ckr ¼

Z 1

0

Z 1

0

W kðx; ZÞGrðx; ZÞdxdZ, (19)

crðx; ZÞ ¼ k eiŷr

X1
k¼1

ckrSF ðk; rÞW kðx; ZÞ, (20)

where k ¼ 4=p2ð1þ l2Þ2, and cr is a complex function of x and Z. With help of the above notations, the
translational displacement of the steady-state response of the plate can be written as

Zðx; Z; tÞ ¼
XNp

r¼1

crðx; ZÞ e
iÔrt. (21)

The process of reconstructing the distributed dynamic loads from the plate response begins with the
measured steady-state translational displacements denoted as

Zðxm; Zn; tsÞ; m ¼ 1; . . . ;Nm; n ¼ 1; . . . ;Nn; s ¼ 1; . . . ;NT , (22)

where Nm�Nn is the number of points of the measurement-point rectangle on the plate, and NT the number of
data in the time dimension. Note that the distribution of the measurement points is not necessary to be a
rectangle, but chosen in this study only for convenience. The frequency analysis gives the dominant circular
frequencies and their corresponding real amplitudes and phase angles contained in the response data, namely

Ôr; c̃rðxm; ZnÞ; ỹrðxm; ZnÞ, (23)

where

r ¼ 1; . . . ;Np; m ¼ 1; . . . ;Nm; n ¼ 1; . . . ;Nn,

Np is the number of dominant frequencies, and Ôr is sorted so that Ô1o � � �oÔNp
.

Provided that the sets of Ok and zk of modes are available, the scale factors SF can be calculated, and the
necessary modes can be selected according to the criterion described in Section 3.4 and denoted as a set Dm.
According to Eqs. (20) and (21), the combination of those real amplitudes and phase angles corresponding to
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the rth dominant circular frequency Ôr can practically be given as the following truncated form:

c̃rðxm; ZnÞ e
iỹrðxm ;ZnÞ ¼ k eiŷr

X
k2Dm

ckrSF ðk; rÞW kðxm; ZnÞ, (24)

where m ¼ 1; . . . ;Nm; n ¼ 1; . . . ;Nn.
Eq. (24) may be an ill-posed problem for the solution of ckr if the scale factors taken into account include

excessively small ones. Hence, it may be necessary to employ the regularization approaches, such as TSVD or
Tikhonov regularization [17,21,24]. However, it is demonstrated by theoretical discussion in Section 3.3 and
numerical simulations in Section 4.1 that the employment of regularization may be avoided by applying the
mode selection method together with its selection criterion, and that with these proposed approaches the
reconstruction results can be actually improved. The solution of Eq. (24) for ckr will be further pursued in
Sections 3.3 and 3.4 by means of the method of mode selection and TSVD.

After ckr is solved from Eq. (24), the last step is to solve Eq. (19) for Grðx; ZÞ. Eq. (19) can be regarded as a
mapping A from the space of all kinds of Grðx; ZÞ, denoted as U, to the space of all W kðx; ZÞ, denoted as V.
That is, A : U ! V . Hence, Eq. (19) can be solved for Grðx; ZÞ by using the projection method [25] as follows.

Let UL be an L-dimensional subspace of U with a series of orthogonal base functions fjlðx; ZÞg with respect
to a given inner product, VK be a K-dimensional subspace of V with a series of orthogonal base functions
fW kðx; ZÞg having the inner product defined by hW i;W ji ¼

R 1
0

R 1
0 W iðx; ZÞW jðx; ZÞ dx dZ, and the following

relations hold

UL � ULþ1 � � � � � U ; V K � V Kþ1 � � � � � V . (25)

The definition of a projection operator QK : V ! V K enables one to establish an approximate projection

QK AjUL
: UL ! VK . (26)

Therefore, Eq. (19) as an approximate projection (26) can easily be recast as the following matrix equation:

Aa ¼ c; (27)

where

A �

Z 1

0

Z 1

0

W kðx; ZÞjlðx; ZÞdxdZ
� �

K�L

; c � fckrgK�1,

and a is the vector of expansion coefficients in Eq. (12). Solving Eq. (27) for a, one at last reaches the spatial
distribution function

Grðx; ZÞ ¼ aTuðx; ZÞ. (28)

3.3. TSVD and mode selection

This subsection discusses the solution of Eq. (24) for ckr in detail, and thus introduces the comparison
between the methods of TSVD and mode selection.

Suppose that the mode set Dm is known, and denote the number of the modes included in the set as ND.
Now rewrite Eq. (24) concisely in a matrix form

w ¼ Hc0; (29)

where c0 ¼ ceiŷr , H ¼WSF, W ¼ ½W kðxm; ZnÞ�NxZ�ND
, SF ¼ ½SF ðk; rÞ�ND�ND

is a complex diagonal matrix,
w ¼ fc̃rðxm; ZnÞ e

iỹrðxm;ZnÞgNxZ�1=k is a complex vector, c ¼ fckrgND�1 is a real vector, ŷr is the phase angle, and
NxZ ¼ Nm �Nn. Note that in this equation both the vector c and the phase angle ŷr are unknown.

To solve the above equation for c0, one has at least two methods on hand. That is, the pseudoinverse method
and the TSVD method.

By means of the pseudoinverse method, one can obtain the least squared solution of Eq. (29):

c0 ¼ Hþw, (30)
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where the superscript plus denotes the Moore–Penrose pseudoinverse, and H is formed by virtue of mode
selection, of which the selection criterion is addressed in Section 3.4.

On the other hand, the method TSVD can be employed in two ways. One is direct, named as DTSVD. The
other is indirect, named as IDTSVD. With DTSVD, the truncated Eq. (29) is not based on the mode selection
but on the estimation of enough modes for consideration, and then it is solved by TSVD. In simulations in
Section 4, the modes under consideration with DTSVD are the first 20 modes with the lowest natural
frequencies. This method fails to work in most cases during numerous simulations, but in the first case study in
this manuscript it shows acceptable result, and they are displayed just to show its instability.

With IDTSVD, the truncated Eq. (29) is first established from the same estimation of enough modes for
consideration as with DTSVD, and then the regularization parameter k(T) may be obtained from Eq. (29)
with TSVD. However, this parameter is used as a criterion for mode selection to reform Eq. (29), and the
equation is finally solved with the pseudoinverse method.

The final solution for the real vector c can be found by the method of nonlinear optimization, which is to
find an optimum ŷr with the objective minimizing the norm of the imaginary part of c0 e�iŷr . It has two optimal
values for ŷr in a range of [0,2p), but one can assume ŷr 2 ½0;pÞ in Eq. (15) without loss of generality to
guarantee the unique optimum. Once the value of ŷr is obtained, the vector c reads

c ¼ Reðc0e�iŷrÞ. (31)

3.4. Criterion for mode selection

In the above subsection, a criterion for mode selection is just touched upon. This subsection is devoted to
the formulation of this criterion with the aim of determining the mode set Dm in Eq. (24) for the mode
selection method.

Eq. (29) is the matrix form of Eq. (24). Considering the practical errors involved in the formulation of
Eq. (29), the equation becomes a linear least squares problem

min
c02CND

jjHc0 � wjj2, (32)

where H 2 C
NxZ�ND

ND
; NDoNxZ; w 2 CNxZ , C is the set of all complex numbers, and jj � jj2 denotes the l2-norm

for vectors or the induced spectral norm for matrices, similarly hereafter.
The proposed criterion is derived from the Rice condition number of the solution to the above problem. The

2-norm relative condition number [26] of the solution to problem (32) may be expressed as

c2ðH;w; c
0Þ ¼ jjHþjj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjHjj22ðjjc

0jj22 þ ðjjH
þjj2jjrjj2Þ

2
Þ þ jjwjj22

q
=jjc0jj2, (33)

where r ¼ w�Hc0, and the following inequality holds as a first-order approximation

jjDc0jj2=jjc
0jj2pc2ðH;w; c

0ÞjjðjjDHjj2=jjHjj2; jjDwjj2=jjwjj2Þ
T
jj2. (34)

The modal matrix W is of full column rank NB provided that the number of measurement points is large
enough. Thus it holds that Hþ ¼ SF�1Wþ. In general, jjwjj2 � jjHc0jj2. Then, Eq. (33) becomes

c2ðH;w; c
0Þ � jjHþjj2jjHjj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðjjHþjj2jjrjj2=jjc0jj2Þ

2
q

pjjWþjj2jjWjj2jjSF
�1jj2jjSFjj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðjjSF�1jj2jjW

þjj2jjrjj2=jjc0jj2Þ
2

q
. (35)

It requires in mode selection that sminðSFÞ=smaxðSFÞX�SF , namely, jjSF�1jj2jjSFjj2p1=�SF , where smin and
smax represent the smallest singular value and the largest one, respectively. Hence, the above relation becomes

c2ðH;w; c
0Þp
jjWþjj2jjWjj2

�SF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

jjWþjj2jjrjj2

�SF jjSFjj2jjc
0jj2

� �2
s

. (36)

Suppose that the relative errors jjDHjj2=jjHjj2 and jjDwjj2=jjwjj2 are known or estimated and that one
expects to control the relative error of reconstructed vector c, namely, jjDc0jj2=jjc

0jj2, under the error control
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parameter ec, then the permitted least upper bound for the 2-norm relative condition number sup c2ðH;w; c0Þ
can be obtained from Eq. (34) by imposing that

sup c2ðH;w; c
0Þpec=jjðjjDHjj2=jjHjj2; jjDwjj2=jjwjj2Þ

T
jj2. (37)

Finally, the criterion threshold eSF is obtained from Eq. (36) by requiring that

jjWþjj2jjWjj2

�SF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

jjWþjj2jjrjj2

�SF jjSFjj2jjc
0jj2

� �2
s

p sup c2ðH;w; c
0Þ, (38)

if jjrjj2 and jjc0jj2 can be estimated. Consequently, the modes will be selected so as to satisfy the following
inequality:

jSF ðk; rÞj

�
max
n2D
ðjSFðn; rÞjÞX�SF ðrÞ; k 2 D; r ¼ 1 . . .Np (39)

where D is a set including enough modes for consideration, and the mode set Dm is finally determined.

4. Case studies

All case studies in this section deal with a dynamic system described by Eq. (6) whose parameters include the
aspect ratio l ¼ 7/3 and the damping ratios zk ¼ 0:2þ 0:3ðk � 1Þ=39 when k ¼ 1; . . . ; 40 and zk ¼ 1 when
k ¼ 41; . . . ;1. The dimensionless system results from a rectangular thin elastic plate, which is uniform,
damped and simply supported.

In the following numerical simulations, the discrete dimensionless translational displacements of the system
are sampled from the analytical solution by the mode superposition principle, and only steady-state responses
are under consideration. Modes of up to 40 orders are used to simulate the response, but only the modes of up
to 20 orders are applied to reconstruct the load. The total dimensionless time length is T ¼ 10, the sampling
rate is Dt ¼ 0.01, and the distribution of measurement position is ðxi; ZjÞ ¼ ði=9; j=9Þ with i; j ¼ 1; . . . ; 8.
Uniformly distributed random noises are applied to the displacements, natural frequencies, mode shapes,

and damping ratios. The noise applied to the dimensionless displacements is an additive noise of the maximum
displacement multiplied by a noise factor, whose upper bound is denoted as aZ. The noise to the dimensionless
natural frequencies is an additive noise of the lowest dimensionless natural frequency multiplied by a noise
factor, whose upper bound is denoted as aO. The noise to the dimensionless orthonormal mode shapes is a
multiplicative noise, the upper bound of whose noise factor is denoted as aW. And the noise to the damping
ratios is a multiplicative noise, the upper bound of whose noise factor is denoted as aB. The signal-to-noise
ratios of the above resulting noisy data are denoted as SNRZ, SNRO, SNRW and SNRz, respectively.
However, no noise is applied to the dimensionless orthonormal mode shapes when they are used as orthogonal
base functions in the projection method in Section 3.2.

Furthermore, in all the following results, the relative errors are defined as the absolute errors divided by the
maximum value of the original data.

4.1. Comparisons among methods DTSVD, IDTSVD and mode selection

The first case study serves to compare the three methods mentioned in Section 3.3. The system is subject to
the harmonic excitation pðx; Z; tÞ ¼W 3ðx; ZÞ cosðÔtþ ŷÞ, where Ô ¼ O2 þ 0:5O1 and ŷ ¼ p=3. The relevant
noise levels are aO ¼ 0.01 and aZ ¼ aW ¼ az ¼ 0:1. Fig. 2(a) shows the spatial distribution of the excitation.

As two methods for choosing regularization parameter, namely, L-curve criterion and generalized cross-
validation (GCV), are available for the reconstruction, they both are considered for illustration. Four
simulations are displayed for each of methods DTSVD and IDTSVD, two for method GCV and the other two
for L-curve criterion. There are 10 simulations presented in this case study. Simulations 1-1 to 1-4 are
for method DTSVD, among which simulations 1-1 and 1-2 are for GCV and simulations 1-3 and 1-4 are for
L-curve. Simulations 1-5 to 1-8 are for method IDTSVD, among which simulations 1-5 and 1-6 are for GCV
and simulations 1-7 and 1-8 are for L-curve. Simulations 1-9 and 1-10 are for the mode selection method with
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error control parameter ec ¼ 1, and Fig. 3 shows the variation of the scale factors SF with respect to the order
of mode.

Table 1 presents the signal-to-noise ratios for the resulting simulation data and Table 2 shows all the
relevant reconstruction results except the spatial error distribution. The spatial error distributions of
reconstructed loads are illustrated in Figs. 4–8.

Simulations 1-1, 1-4, 1-6 and 1-7 have rather good results of load reconstruction, while simulations 1-2, 1-3,
1-5 and 1-8 have poor levels of reconstruction error, respectively. The latter poor results seldom appear, but
they did appear. The difference between the good ones and the poor ones can be distinguished from the values
of the regularization parameter k(T) in Table 2 and their reconstruction error levels in Figs. 4–7. The
application of the two methods, GCV and L-curve criterion, on the authors’ study are unstable, even when
the same case, with different but the same level noise, is dealt with. On the other hand, the proposed method of
mode selection is rather stable, which may be concluded from the extreme reconstruction situations 1-9 and
1-10 whose reconstruction errors are displayed in Fig. 8.

Consequently, the load reconstruction is unstable with methods DTSVD and IDTSVD, probably because
unstable regularization-parameter selection happens when errors are under consideration, which maybe is an
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Table 1

Signal-to-noise ratios for Case 1.

Method Simulation SNRZ SNRO SNRW SNRz

DTSVD

GCV 1-1 18.1466 55.9526 24.5842 8.7279

1-2 18.1305 54.4237 24.6654 8.0286

L-curve 1-3 18.1244 56.6303 24.9511 10.1629

1-4 18.1179 54.8658 24.6910 8.0930

IDTSVD

GCV 1-5 18.1343 54.6461 24.5243 9.8508

1-6 18.1269 54.8295 24.4994 10.2294

L-curve 1-7 18.1317 54.6590 24.7402 8.7936

1-8 18.1269 54.8295 24.4994 10.2294

Mode selection 1-9 18.1454 54.3879 24.7872 10.6104

1-10 18.1145 56.5100 24.7003 7.9727

Table 2

Relevant reconstruction results for Case 1.

Method Simulation k(T)|eSF Dm DÔ Dŷ ðradÞ

DTSVD

GCV 1-1 k(T) ¼ 3 – �0.0137 0.0445

1-2 k(T) ¼ 18 – �0.0039 �0.2591

L-curve 1-3 k(T) ¼ 15 – �0.0145 �0.1365

1-4 k(T) ¼ 6 – 0.0047 0.0371

IDTSVD

GCV 1-5 k(T) ¼ 10 1y10 0.0047 �0.0223

1-6 k(T) ¼ 3 1y3 0.0008 �0.0258

L-curve 1-7 k(T) ¼ 6 1y6 0.0158 0.0240

1-8 k(T) ¼ 10 1y10 0.0008 �0.0406

Mode selection 1-9 eSF ¼ 0.1362 1y4 0.0100 0.0172

1-10 eSF ¼ 0.0930 1y6 0.0200 �0.0232

X.Q. Jiang, H.Y. Hu / Journal of Sound and Vibration 323 (2009) 626–644636
intrinsic drawback in method TSVD. Meanwhile, the reconstruction is rather stable with the mode selection
method together with the proposed criterion.

4.2. Influence of the selection criterion on mode selection method

The second case study is devoted to illustrating the influence of error control parameter ec on the method
of mode selection. The system is subject to a harmonic excitation pðx; Z; tÞ ¼ ðZ� x2Þ cosðÔtþ ŷÞ, where
Ô ¼ O2 þ 0:5O1 and ŷ ¼ p=3. The relevant noise levels are aO ¼ 0.001 and aZ ¼ aW ¼ az ¼ 0:01. Fig. 9(a)
shows the spatial distribution of the excitation.

This case study includes simulations 2-1 to 2-4. Table 3 presents the signal-to-noise ratios for the resulting
simulation data and all the relevant reconstruction results except the spatial error distribution. The zero value
of eSF in simulation 2-4 in Table 3 indicates that the selected mode range is beyond the 20 modes under
consideration. Fig. 3 shows the variation of the scale factors SF with respect to the order of mode. The spatial
error distributions of reconstructed loads are illustrated in Fig. 10.
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Table 3

Signal-to-noise ratios and relevant reconstruction results for Case 2.

– Simulation 2-1 Simulation 2-2 Simulation 2-3 Simulation 2-4

ec ¼ 0.1 ec ¼ 0.5 ec ¼ 1 ec ¼ 5

SNRZ 35.6229 35.6057 35.6198 35.6091

SNRO 74.6590 76.5100 74.9445 74.8658

SNRW 44.7402 44.7003 44.7072 44.6910

SNRz 28.7936 27.9727 27.5305 28.0930

eSF 0.1240 0.0179 0.0133 0

Dm 1y5 1y14 1y16 1y20

DÔ 0.0010 �0.0021 �0.0026 �0.0015

Dŷ ðradÞ �0.0015 �0.0027 �0.0009 0.0011
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From Fig. 10, it is clear that smaller error expectation, namely smaller error control parameter ec, results in
narrower selected mode range and better reconstruction accuracy compared to larger error control parameter
ec, only if it does not exceed the critical value which is not yet known. From the other point of view, larger
error expectation, or larger error control parameter ec, results in broader selected mode range, which means
broader reconstruction domain, though reconstruction accuracy will decrease. Therefore, the mode selection



ARTICLE IN PRESS
X.Q. Jiang, H.Y. Hu / Journal of Sound and Vibration 323 (2009) 626–644640
method may be applied to make a balance between reconstruction range and accuracy, whereas the method
of TSVD fails to do so. It is also disclosed by the simulations that the criterion needs further improvement,
because the reconstruction is much more accurate than the expectation given by the error control
parameter ec.

4.3. More complex case studies

The following case studies show the effect of the mode selection method in different complex situations. The
third case and the fourth case are presented for complex situations of mode-composed spatial distribution,
while the fifth case through the seventh case are illustrated for situations of polynomial-composed spatial
distribution.

In the third case, the system is subject to a compound excitation with two harmonic components
pðx; Z; tÞ ¼W 3ðx; ZÞ cosðÔ1tþ ŷ1Þ �W 5ðx; ZÞ cosðÔ2tþ ŷ2Þ. In the fourth case, the excitation is of a complex
form of pðx; Z; tÞ ¼

P
i¼1;3f iW iðx; ZÞ cosðÔ1tþ ŷ1Þ þ

P
j¼2;5gjW jðx; ZÞ cosðÔ2tþ ŷ2Þ, where f 1 ¼ g2 ¼ g5 ¼ 1,

f3 ¼ �1.
In the fifth case, the system is excited by a harmonic load with uniform spatial distribution

pðx; Z; tÞ ¼ cosðÔ1tþ ŷ1Þ. In the sixth case, the excitation is a compound load with two harmonic components
pðx; Z; tÞ ¼ cosðÔ1tþ ŷ1Þ � x2 cosðÔ2tþ ŷ2Þ. In the seventh case, the system is under a compound load with
complex spatial distribution pðx; Z; tÞ ¼ ðZ� x2Þ cosðÔ1tþ ŷ1Þ þ ðxþ xZÞ cosðÔ2tþ ŷ2Þ.

Table 4 presents the frequencies Ô1; Ô2, phase angles ŷ1; ŷ2, relevant noise levels aZ; aO; aW ; az, signal-
to-noise ratios SNRZ;SNRO;SNRW ; SNRz, mode selection threshold eSF, mode range Dm, errors between
reconstructed and original frequencies DÔ1;DÔ2, and errors between reconstructed and original phase angles
Dŷ1;Dŷ2, of all the cases addressed in this subsection. Fig. 3 shows for Case 5 the variation of the scale factors
SF with respect to the order of mode, while Fig. 11 shows for Cases 3, 4, 6, and 7 the variation of the scale
factors SF with respect to the order of mode.

The original load distributions are shown in Fig. 2 for Case 3, in Fig. 12 for Case 4, in Fig. 13 for Cases 5
and 6, and in Fig. 9 for Case 7, respectively, and their corresponding spatial error distributions of
reconstructed loads are illustrated in Figs. 14–18.
Table 4

Reconstruction parameters and relevant results for Cases 3–7.

– Case 3 Case 4 Case 5 Case 6 Case 7

ec ¼ 1 ec ¼ 1 ec ¼ 1 ec ¼ 0.1 ec ¼ 0.5

Ô1
O2+0.5O1 O2+0.5O1 O2+0.5O1 O2+0.5O1 O2+0.5O1

Ô2
O5+0.8O1 O5+0.8O1 – O5+0.8O1 O5+0.8O1

ŷ1 p/3 p/3 p/3 p/3 p/3

ŷ2 3p/4 3p/4 – 3p/4 3p/4

aO 0.01 0.01 0.01 0.001 0.001

aZ, aW, az 0.1 0.1 0.1 0.01 0.01

SNRZ 16.5172 16.6665 16.2398 36.0782 34.8004

SNRO 54.6461 54.5454 56.6537 75.4663 75.3568

SNRW 24.5243 24.7515 24.8062 44.7637 44.6863

SNRz 9.8508 8.6759 7.3533 28.3082 29.7049

�SFðÔ1Þ 0.1275 0.1808 0.1584 0.3953 0.0303

DmðÔ1Þ 1y5 1y3 1y3 1y3 1y10

DÔ1
0.0059 �0.0068 0.0130 0.0080 �0.0028

Dŷ1 ðradÞ 0.0070 0.0336 �0.0261 0.0014 0.0014

�SFðÔ2Þ 0.1538 0.1806 – 0.4049 0

DmðÔ2Þ 1y10 1y10 – 1y8 1y20

DÔ2
0.0449 0.0294 – –0.0350 0.0052

Dŷ2 ðradÞ �0.0066 �0.0154 – �0.0240 –0.0002
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Fig. 14. Error distributions for Case 3: (a) for the first frequency component and (b) for the second frequency component.
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Fig. 15. Error distributions for Case 4: (a) for the first frequency component and (b) for the second frequency component.
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Simulations in this subsection still display good accuracy even in complex situations provided that the noise
levels are not too high.
5. Concluding remarks

In this study, the concept of scale factor and the method of mode selection are described with regard to a
damped thin elastic plate, and the consequent reconstruction theory is proposed. To obtain the mode range for
load reconstruction with anticipated error control, a criterion for the mode selection method is formulated.

Numerical simulations indicate that the load reconstruction has high accuracy even when the plate is under
a complex distributed load. Simulation comparisons between the method of TSVD and the proposed method
of mode selection demonstrate that the former is unstable probably due to its problem of selecting
regularization parameter, while the latter is not only stable, but also robust. Moreover, the mode selection
method can make a balance between the reconstruction range and error level.

The ongoing studies will focus on some open problems such as the improvement of the selection criterion
and the relative high errors on boundaries.
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